저도 머신러닝 기반 분자생성 논문을 썼지만, 머신러닝 기반 분자생성 방법들 중 쓸만한게 거의 없습니다. 논문 저자들 중 자신이 만든 메소드를 계속 쓰는 사람이 있는지 궁금할 정도입니다. 여러가지 문제가 있지만, 일단 데이터를 통한 학습이라는 것이 데이터로부터 자유롭지 못하다는 것과, 합성가능성을 고려하기 어렵다는 점이 문제입니다. 학습한 데이터와 다른것이 생성되었다면, 그것이 머신의 창의력의 결과이기보다는 학습이 잘못되어서 나왔을 가능성이 높습니다. 그리고 사이드 체인에 뭔가 많이 붙었지만, 그게 정말 필요해서 붙었는지, 아니면 머신의 학습 오류인지 판단하기도 어렵습니다. AE 기반 분자 생성 모델에서 AE의 reconstruction조차 100%가 안되는데... 생성할 때 붙는 무언가도 노이즈에 의한 ..